## **GEOMETRY** – **SHEET** 1 – Vector Geometry in $\mathbb{R}^n$

1. (i) Show that the distinct points  $\mathbf{a}$ ,  $\mathbf{b}$ ,  $\mathbf{c}$  are collinear (i.e. lie on a line) in  $\mathbb{R}^n$  if and only if the vectors  $\mathbf{b} - \mathbf{a}$  and  $\mathbf{c} - \mathbf{a}$  are linearly dependent.

(ii) Show that the vectors  $\mathbf{u} = (1, 2, -3)$  and  $\mathbf{v} = (6, 3, 4)$  are perpendicular in  $\mathbb{R}^3$ . Verify directly Pythagoras' Theorem for the right-angled triangles with vertices  $\mathbf{0}, \mathbf{u}, \mathbf{v}$  and vertices  $\mathbf{0}, \mathbf{u}, \mathbf{u} + \mathbf{v}$ .

(iii) Let  $\mathbf{v}, \mathbf{w}$  be vectors in  $\mathbb{R}^n$ . Show that if  $\mathbf{v} \cdot \mathbf{x} = \mathbf{w} \cdot \mathbf{x}$  for all  $\mathbf{x}$  in  $\mathbb{R}^n$  then  $\mathbf{v} = \mathbf{w}$ .

**2.** Consider the two lines in  $\mathbb{R}^3$  given parametrically by

$$\mathbf{r}(\lambda) = (1,3,0) + \lambda(2,3,2), \qquad \mathbf{s}(\mu) = (2,1,0) + \mu(0,2,1).$$

Show that the shortest distance between these lines is  $\sqrt{3/7}$  by solving the simultaneous equations

$$(\mathbf{r}(\lambda) - \mathbf{s}(\mu)) \cdot (2, 3, 2) = 0,$$
  $(\mathbf{r}(\lambda) - \mathbf{s}(\mu)) \cdot (0, 2, 1) = 0$ 

What geometry do these equations encode? (*Optional* – requires knowledge of partial derivatives. The shortest distance could also be found by solving the equations

$$rac{\partial}{\partial\lambda}\left(|\mathbf{r}(\lambda)-\mathbf{s}(\mu)|^2
ight)=0,\qquad rac{\partial}{\partial\mu}\left(|\mathbf{r}(\lambda)-\mathbf{s}(\mu)|^2
ight)=0.$$

Determine these equations and explain why they are (essentially) the same as the previous two.)

**3.** Let (x, y, z) = (s + t + 2, 3s - 2t + 1, 4s - 3t). Show that, as s, t vary, the point (x, y, z) ranges over a plane with equation ax + by + cz = d which you should determine.

- **4.** Determine, in the form  $\mathbf{r} \cdot \mathbf{n} = c$ , the equations of each of the following planes in  $\mathbb{R}^3$ ;
  - (i) the plane containing the points (1, 0, 0), (1, 1, 0), (0, 1, 1);
  - (ii) the plane containing the point (2, 1, 0) and the line x = y = z;
  - (iii) the two planes containing the points (1, 0, 1), (0, 1, 1) and which are tangential to the unit sphere, centre **0**.
- 5. Given a vector  $\mathbf{a} \in \mathbb{R}^2$  and a constant  $0 < \lambda < 1$ , define  $\mathbf{b} = \mathbf{a}/(1-\lambda^2)$  and prove that

$$\frac{|\mathbf{r} - \mathbf{a}|^2 - \lambda^2 |\mathbf{r}|^2}{1 - \lambda^2} = |\mathbf{r} - \mathbf{b}|^2 - \lambda^2 |\mathbf{b}|^2.$$

Deduce Apollonius' Theorem which states that if O and A are fixed points in the plane, then the locus of all points X, such that  $|AX| = \lambda |OX|$ , is a circle. Find its centre and radius.

**6**. (Optional) A tetrahedron ABCD has vertices with respective position vectors  $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$  from an origin O inside the tetrahedron. The lines AO, BO, CO, DO meet the opposite faces in E, F, G, H.

(i) Show that a point lies in the plane *BCD* if and only if it has position vector  $\lambda \mathbf{b} + \mu \mathbf{c} + \nu \mathbf{d}$  where  $\lambda + \mu + \nu = 1$ .

(ii) There are  $\alpha, \beta, \gamma, \delta$ , not all zero, such that  $\alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} + \delta \mathbf{d} = \mathbf{0}$ . Show that E has position vector

$$\frac{-\alpha \mathbf{a}}{\beta + \gamma + \delta}.$$

(iii) Deduce that

$$\frac{|AO|}{|AE|} + \frac{|BO|}{|BF|} + \frac{|CO|}{|CG|} + \frac{|DO|}{|DH|} = 3.$$